| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimdhyp | Structured version Visualization version GIF version | ||
| Description: Version of elimhyp 4146 where the hypothesis is deduced from the final antecedent. See divalg 15126 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.) |
| Ref | Expression |
|---|---|
| elimdhyp.1 | ⊢ (𝜑 → 𝜓) |
| elimdhyp.2 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| elimdhyp.3 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) |
| elimdhyp.4 | ⊢ 𝜃 |
| Ref | Expression |
|---|---|
| elimdhyp | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimdhyp.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | iftrue 4092 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2628 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | elimdhyp.2 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbid 222 | . 2 ⊢ (𝜑 → 𝜒) |
| 7 | elimdhyp.4 | . . 3 ⊢ 𝜃 | |
| 8 | iffalse 4095 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 9 | 8 | eqcomd 2628 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 10 | elimdhyp.3 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜃 ↔ 𝜒)) |
| 12 | 7, 11 | mpbii 223 | . 2 ⊢ (¬ 𝜑 → 𝜒) |
| 13 | 6, 12 | pm2.61i 176 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1483 ifcif 4086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: divalg 15126 |
| Copyright terms: Public domain | W3C validator |