MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimdhyp Structured version   Visualization version   GIF version

Theorem elimdhyp 4151
Description: Version of elimhyp 4146 where the hypothesis is deduced from the final antecedent. See divalg 15126 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdhyp.1 (𝜑𝜓)
elimdhyp.2 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜒))
elimdhyp.3 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃𝜒))
elimdhyp.4 𝜃
Assertion
Ref Expression
elimdhyp 𝜒

Proof of Theorem elimdhyp
StepHypRef Expression
1 elimdhyp.1 . . 3 (𝜑𝜓)
2 iftrue 4092 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
32eqcomd 2628 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
4 elimdhyp.2 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜒))
53, 4syl 17 . . 3 (𝜑 → (𝜓𝜒))
61, 5mpbid 222 . 2 (𝜑𝜒)
7 elimdhyp.4 . . 3 𝜃
8 iffalse 4095 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
98eqcomd 2628 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
10 elimdhyp.3 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃𝜒))
119, 10syl 17 . . 3 𝜑 → (𝜃𝜒))
127, 11mpbii 223 . 2 𝜑𝜒)
136, 12pm2.61i 176 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  divalg  15126
  Copyright terms: Public domain W3C validator