![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimne0 | Structured version Visualization version GIF version |
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimne0 | ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2856 | . 2 ⊢ (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
2 | neeq1 2856 | . 2 ⊢ (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
3 | ax-1ne0 10005 | . 2 ⊢ 1 ≠ 0 | |
4 | 1, 2, 3 | elimhyp 4146 | 1 ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2794 ifcif 4086 0cc0 9936 1c1 9937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-1ne0 10005 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-if 4087 |
This theorem is referenced by: sqdivzi 31610 |
Copyright terms: Public domain | W3C validator |