MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimne0 Structured version   Visualization version   GIF version

Theorem elimne0 10030
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.)
Assertion
Ref Expression
elimne0 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0

Proof of Theorem elimne0
StepHypRef Expression
1 neeq1 2856 . 2 (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
2 neeq1 2856 . 2 (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
3 ax-1ne0 10005 . 2 1 ≠ 0
41, 2, 3elimhyp 4146 1 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wne 2794  ifcif 4086  0cc0 9936  1c1 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-1ne0 10005
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ne 2795  df-if 4087
This theorem is referenced by:  sqdivzi  31610
  Copyright terms: Public domain W3C validator