| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elini.1 | ⊢ 𝐴 ∈ 𝐵 |
| elini.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | elin 3796 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | mpbir2an 955 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1990 ∩ cin 3573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 |
| This theorem is referenced by: recvs 22946 qcvs 22947 cnncvs 22959 0pwfi 39227 sge0rnn0 40585 sge0reuz 40664 |
| Copyright terms: Public domain | W3C validator |