MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 3797
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3796 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 955 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581
This theorem is referenced by:  recvs  22946  qcvs  22947  cnncvs  22959  0pwfi  39227  sge0rnn0  40585  sge0reuz  40664
  Copyright terms: Public domain W3C validator