| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnelunOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of elnelun 3964 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elneldisjOLD.e | ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} |
| elneldisjOLD.f | ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝑠} |
| Ref | Expression |
|---|---|
| elnelunOLD | ⊢ (𝐸 ∪ 𝑁) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneldisjOLD.e | . . 3 ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} | |
| 2 | elneldisjOLD.f | . . . 4 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝑠} | |
| 3 | df-nel 2898 | . . . . . 6 ⊢ (𝐵 ∉ 𝑠 ↔ ¬ 𝐵 ∈ 𝑠) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑠 ∈ 𝐴 → (𝐵 ∉ 𝑠 ↔ ¬ 𝐵 ∈ 𝑠)) |
| 5 | 4 | rabbiia 3185 | . . . 4 ⊢ {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝑠} = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝑠} |
| 6 | 2, 5 | eqtri 2644 | . . 3 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝑠} |
| 7 | 1, 6 | uneq12i 3765 | . 2 ⊢ (𝐸 ∪ 𝑁) = ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} ∪ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝑠}) |
| 8 | rabxm 3961 | . 2 ⊢ 𝐴 = ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} ∪ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝑠}) | |
| 9 | 7, 8 | eqtr4i 2647 | 1 ⊢ (𝐸 ∪ 𝑁) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 {crab 2916 ∪ cun 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rab 2921 df-v 3202 df-un 3579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |