![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpglem1 | Structured version Visualization version GIF version |
Description: Lemma for elpg 42457. (Contributed by Emmett Weisz, 28-Aug-2021.) |
Ref | Expression |
---|---|
elpglem1 | ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4168 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ 𝒫 𝑥 → (1st ‘𝐴) ⊆ 𝑥) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → (1st ‘𝐴) ⊆ 𝑥) |
3 | simpl 473 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg) | |
4 | 2, 3 | sstrd 3613 | . . 3 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → (1st ‘𝐴) ⊆ Pg) |
5 | elpwi 4168 | . . . . 5 ⊢ ((2nd ‘𝐴) ∈ 𝒫 𝑥 → (2nd ‘𝐴) ⊆ 𝑥) | |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → (2nd ‘𝐴) ⊆ 𝑥) |
7 | simpl 473 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg) | |
8 | 6, 7 | sstrd 3613 | . . 3 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → (2nd ‘𝐴) ⊆ Pg) |
9 | 4, 8 | anim12dan 882 | . 2 ⊢ ((𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
10 | 9 | exlimiv 1858 | 1 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 Pgcpg 42452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
This theorem is referenced by: elpg 42457 |
Copyright terms: Public domain | W3C validator |