Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem1 Structured version   Visualization version   GIF version

Theorem elpglem1 42454
Description: Lemma for elpg 42457. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem1 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elpglem1
StepHypRef Expression
1 elpwi 4168 . . . . 5 ((1st𝐴) ∈ 𝒫 𝑥 → (1st𝐴) ⊆ 𝑥)
21adantl 482 . . . 4 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → (1st𝐴) ⊆ 𝑥)
3 simpl 473 . . . 4 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg)
42, 3sstrd 3613 . . 3 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → (1st𝐴) ⊆ Pg)
5 elpwi 4168 . . . . 5 ((2nd𝐴) ∈ 𝒫 𝑥 → (2nd𝐴) ⊆ 𝑥)
65adantl 482 . . . 4 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → (2nd𝐴) ⊆ 𝑥)
7 simpl 473 . . . 4 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg)
86, 7sstrd 3613 . . 3 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → (2nd𝐴) ⊆ Pg)
94, 8anim12dan 882 . 2 ((𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
109exlimiv 1858 1 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1704  wcel 1990  wss 3574  𝒫 cpw 4158  cfv 5888  1st c1st 7166  2nd c2nd 7167  Pgcpg 42452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  elpg  42457
  Copyright terms: Public domain W3C validator