| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqneltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrrd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrrd | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqcomd 2628 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqneltrrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqneltrd 2720 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: bitsf1 15168 lssvancl2 18946 lbsind2 19081 lindfind2 20157 2atjlej 34765 2atnelvolN 34873 lmod1zrnlvec 42283 |
| Copyright terms: Public domain | W3C validator |