MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltrrd Structured version   Visualization version   Unicode version

Theorem eqneltrrd 2721
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
Hypotheses
Ref Expression
eqneltrrd.1  |-  ( ph  ->  A  =  B )
eqneltrrd.2  |-  ( ph  ->  -.  A  e.  C
)
Assertion
Ref Expression
eqneltrrd  |-  ( ph  ->  -.  B  e.  C
)

Proof of Theorem eqneltrrd
StepHypRef Expression
1 eqneltrrd.1 . . 3  |-  ( ph  ->  A  =  B )
21eqcomd 2628 . 2  |-  ( ph  ->  B  =  A )
3 eqneltrrd.2 . 2  |-  ( ph  ->  -.  A  e.  C
)
42, 3eqneltrd 2720 1  |-  ( ph  ->  -.  B  e.  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618
This theorem is referenced by:  bitsf1  15168  lssvancl2  18946  lbsind2  19081  lindfind2  20157  2atjlej  34765  2atnelvolN  34873  lmod1zrnlvec  42283
  Copyright terms: Public domain W3C validator