MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc3rOLD Structured version   Visualization version   GIF version

Theorem eqsbc3rOLD 3493
Description: Obsolete proof of eqsbc3r 3492 as of 7-Jul-2021. This proof was automatically generated from the virtual deduction proof eqsbc3rVD 39075 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
eqsbc3rOLD (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc3rOLD
StepHypRef Expression
1 eqcom 2629 . . . . . 6 (𝐵 = 𝑥𝑥 = 𝐵)
21sbcbii 3491 . . . . 5 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
32biimpi 206 . . . 4 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
4 eqsbc3 3475 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
53, 4syl5ib 234 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐴 = 𝐵))
6 eqcom 2629 . . 3 (𝐴 = 𝐵𝐵 = 𝐴)
75, 6syl6ib 241 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
8 idd 24 . . . . 5 (𝐴𝑉 → (𝐵 = 𝐴𝐵 = 𝐴))
98, 6syl6ibr 242 . . . 4 (𝐴𝑉 → (𝐵 = 𝐴𝐴 = 𝐵))
109, 4sylibrd 249 . . 3 (𝐴𝑉 → (𝐵 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵))
1110, 2syl6ibr 242 . 2 (𝐴𝑉 → (𝐵 = 𝐴[𝐴 / 𝑥]𝐵 = 𝑥))
127, 11impbid 202 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator