![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc3rOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of eqsbc3r 3492 as of 7-Jul-2021. This proof was automatically generated from the virtual deduction proof eqsbc3rVD 39075 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
eqsbc3rOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2629 | . . . . . 6 ⊢ (𝐵 = 𝑥 ↔ 𝑥 = 𝐵) | |
2 | 1 | sbcbii 3491 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐵) |
3 | 2 | biimpi 206 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 → [𝐴 / 𝑥]𝑥 = 𝐵) |
4 | eqsbc3 3475 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
5 | 3, 4 | syl5ib 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 → 𝐴 = 𝐵)) |
6 | eqcom 2629 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
7 | 5, 6 | syl6ib 241 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 → 𝐵 = 𝐴)) |
8 | idd 24 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐵 = 𝐴 → 𝐵 = 𝐴)) | |
9 | 8, 6 | syl6ibr 242 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐵 = 𝐴 → 𝐴 = 𝐵)) |
10 | 9, 4 | sylibrd 249 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵)) |
11 | 10, 2 | syl6ibr 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 = 𝐴 → [𝐴 / 𝑥]𝐵 = 𝑥)) |
12 | 7, 11 | impbid 202 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 [wsbc 3435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |