| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsalh | Structured version Visualization version GIF version | ||
| Description: An equivalence related to implicit substitution. See equsalhw 2123 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 2-Jun-1993.) |
| Ref | Expression |
|---|---|
| equsalh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| equsalh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalh | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalh.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | nf5i 2024 | . 2 ⊢ Ⅎ𝑥𝜓 |
| 3 | equsalh.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | equsal 2291 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: dvelimf-o 34214 |
| Copyright terms: Public domain | W3C validator |