MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-br Structured version   Visualization version   GIF version

Theorem ex-br 27288
Description: Example for df-br 4654. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-br (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9)

Proof of Theorem ex-br
StepHypRef Expression
1 opex 4932 . . . 4 ⟨3, 9⟩ ∈ V
21prid2 4298 . . 3 ⟨3, 9⟩ ∈ {⟨2, 6⟩, ⟨3, 9⟩}
3 id 22 . . 3 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 𝑅 = {⟨2, 6⟩, ⟨3, 9⟩})
42, 3syl5eleqr 2708 . 2 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → ⟨3, 9⟩ ∈ 𝑅)
5 df-br 4654 . 2 (3𝑅9 ↔ ⟨3, 9⟩ ∈ 𝑅)
64, 5sylibr 224 1 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cpr 4179  cop 4183   class class class wbr 4653  2c2 11070  3c3 11071  6c6 11074  9c9 11077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator