![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version |
Description: Example for df-br 4654. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-br | ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 4932 | . . . 4 ⊢ 〈3, 9〉 ∈ V | |
2 | 1 | prid2 4298 | . . 3 ⊢ 〈3, 9〉 ∈ {〈2, 6〉, 〈3, 9〉} |
3 | id 22 | . . 3 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 𝑅 = {〈2, 6〉, 〈3, 9〉}) | |
4 | 2, 3 | syl5eleqr 2708 | . 2 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 〈3, 9〉 ∈ 𝑅) |
5 | df-br 4654 | . 2 ⊢ (3𝑅9 ↔ 〈3, 9〉 ∈ 𝑅) | |
6 | 4, 5 | sylibr 224 | 1 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {cpr 4179 〈cop 4183 class class class wbr 4653 2c2 11070 3c3 11071 6c6 11074 9c9 11077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |