| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbidh | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction rule). (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| exbidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| exbidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidh | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbidh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | exbidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | alexbii 1760 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: exbidv 1850 exbid 2091 exbidOLD 2200 drex2 2328 ac6s6 33980 |
| Copyright terms: Public domain | W3C validator |