| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alexbii | Structured version Visualization version GIF version | ||
| Description: Biconditional form of aleximi 1759. (Contributed by BJ, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| alexbii.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| alexbii | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexbii.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 219 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | aleximi 1759 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| 4 | 1 | biimprd 238 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 4 | aleximi 1759 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜒 → ∃𝑥𝜓)) |
| 6 | 3, 5 | impbid 202 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: exbi 1773 exbidh 1794 exintrbi 1818 eleq2d 2687 bnj956 30847 |
| Copyright terms: Public domain | W3C validator |