| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximal | Structured version Visualization version GIF version | ||
| Description: A utility theorem. An interesting case is when the same formula is substituted for both 𝜑 and 𝜓, since then both implications express a type of non-freeness. See also alimex 1758. (Contributed by BJ, 12-May-2019.) |
| Ref | Expression |
|---|---|
| eximal | ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1705 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | imbi1i 339 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ ∀𝑥 ¬ 𝜑 → 𝜓)) |
| 3 | con1b 348 | . 2 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | |
| 4 | 2, 3 | bitri 264 | 1 ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ax5e 1841 19.23t 2079 19.23tOLD 2218 xfree2 29304 bj-exalims 32613 |
| Copyright terms: Public domain | W3C validator |