| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version | ||
| Description: A rephrasing of ax-5 1839 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1839 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
| 2 | eximal 1707 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 3 | 1, 2 | mpbir 221 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ax5ea 1842 exlimiv 1858 exlimdv 1861 19.21v 1868 19.9v 1896 aeveq 1982 aevOLD 2162 relopabi 5245 toprntopon 20729 bj-cbvexivw 32660 bj-eqs 32663 bj-snsetex 32951 bj-snglss 32958 topdifinffinlem 33195 ac6s6f 33981 fnchoice 39188 |
| Copyright terms: Public domain | W3C validator |