![]() |
Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exisym1 | Structured version Visualization version GIF version |
Description: A symmetry with ∃.
See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
Ref | Expression |
---|---|
exisym1 | ⊢ (∃𝑥∃𝑥⊥ → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2027 | . 2 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
2 | falim 1498 | . . 3 ⊢ (⊥ → 𝜑) | |
3 | 2 | eximi 1762 | . 2 ⊢ (∃𝑥⊥ → ∃𝑥𝜑) |
4 | 1, 3 | exlimi 2086 | 1 ⊢ (∃𝑥∃𝑥⊥ → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1488 ∃wex 1704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-or 385 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |