| Mathbox for Stefan Allan |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > foo3 | Structured version Visualization version GIF version | ||
| Description: A theorem about the universal class. (Contributed by Stefan Allan, 9-Dec-2008.) |
| Ref | Expression |
|---|---|
| foo3.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| foo3 | ⊢ V = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 3202 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 2 | equid 1939 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 3 | foo3.1 | . . . 4 ⊢ 𝜑 | |
| 4 | 2, 3 | 2th 254 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝜑) |
| 5 | 4 | abbii 2739 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝜑} |
| 6 | 1, 5 | eqtri 2644 | 1 ⊢ V = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 {cab 2608 Vcvv 3200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |