Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  foo3 Structured version   Visualization version   GIF version

Theorem foo3 29302
Description: A theorem about the universal class. (Contributed by Stefan Allan, 9-Dec-2008.)
Hypothesis
Ref Expression
foo3.1 𝜑
Assertion
Ref Expression
foo3 V = {𝑥𝜑}

Proof of Theorem foo3
StepHypRef Expression
1 df-v 3202 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 1939 . . . 4 𝑥 = 𝑥
3 foo3.1 . . . 4 𝜑
42, 32th 254 . . 3 (𝑥 = 𝑥𝜑)
54abbii 2739 . 2 {𝑥𝑥 = 𝑥} = {𝑥𝜑}
61, 5eqtri 2644 1 V = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  {cab 2608  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator