| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege12 | Structured version Visualization version GIF version | ||
| Description: A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege12 | ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege8 38103 | . 2 ⊢ ((𝜓 → (𝜒 → 𝜃)) → (𝜒 → (𝜓 → 𝜃))) | |
| 2 | frege5 38094 | . 2 ⊢ (((𝜓 → (𝜒 → 𝜃)) → (𝜒 → (𝜓 → 𝜃))) → ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 |
| This theorem is referenced by: frege24 38109 frege16 38110 frege13 38116 frege15 38120 frege35 38132 frege49 38147 frege60a 38172 frege60b 38199 frege60c 38217 frege85 38242 frege127 38284 |
| Copyright terms: Public domain | W3C validator |