Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege5 Structured version   Visualization version   GIF version

Theorem frege5 38094
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege5 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem frege5
StepHypRef Expression
1 ax-frege1 38084 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege4 38093 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085
This theorem is referenced by:  rp-frege25  38099  frege6  38100  frege7  38102  frege9  38106  frege12  38107  frege16  38110  frege25  38111  frege18  38112  frege22  38113  frege14  38117  frege29  38125  frege34  38131  frege45  38143  frege80  38237  frege90  38247
  Copyright terms: Public domain W3C validator