| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege64b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65b 38204. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege64b | ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege62b 38201 | . 2 ⊢ ([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) | |
| 2 | frege18 38112 | . 2 ⊢ (([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) → (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege58b 38195 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: frege65b 38204 |
| Copyright terms: Public domain | W3C validator |