| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege66c | Structured version Visualization version GIF version | ||
| Description: Swap antecedents of frege65c 38222. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege66c | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | 1 | frege65c 38222 | . 2 ⊢ (∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
| 3 | ax-frege8 38103 | . 2 ⊢ ((∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) → (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∈ wcel 1990 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege58b 38195 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |