Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege68c Structured version   Visualization version   GIF version

Theorem frege68c 38225
Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege68c ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))

Proof of Theorem frege68c
StepHypRef Expression
1 frege57aid 38166 . 2 ((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑))
2 frege59c.a . . 3 𝐴𝐵
32frege67c 38224 . 2 (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑)))
41, 3ax-mp 5 1 ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602  ax-frege1 38084  ax-frege2 38085  ax-frege8 38103  ax-frege52a 38151  ax-frege58b 38195
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-tru 1486  df-fal 1489  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  frege70  38227  frege77  38234  frege116  38273
  Copyright terms: Public domain W3C validator