| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege70 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege72 38229. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege70.x | ⊢ 𝑋 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege70 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffrege69 38226 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | |
| 2 | frege70.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
| 3 | 2 | frege68c 38225 | . . 3 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → [𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 4 | sbcel1v 3495 | . . . . 5 ⊢ ([𝑋 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴) | |
| 5 | 4 | biimpri 218 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → [𝑋 / 𝑥]𝑥 ∈ 𝐴) |
| 6 | sbcim1 3482 | . . . 4 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → ([𝑋 / 𝑥]𝑥 ∈ 𝐴 → [𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
| 7 | sbcal 3485 | . . . . 5 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) | |
| 8 | sbcim1 3482 | . . . . . . 7 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦 → [𝑋 / 𝑥]𝑦 ∈ 𝐴)) | |
| 9 | sbcbr1g 4709 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦)) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦) |
| 11 | csbvarg 4003 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
| 12 | 2, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ ⦋𝑋 / 𝑥⦌𝑥 = 𝑋 |
| 13 | 12 | breq1i 4660 | . . . . . . . 8 ⊢ (⦋𝑋 / 𝑥⦌𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 14 | 10, 13 | bitri 264 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 15 | sbcg 3503 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 17 | 8, 14, 16 | 3imtr3g 284 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 18 | 17 | alimi 1739 | . . . . 5 ⊢ (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 19 | 7, 18 | sylbi 207 | . . . 4 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 20 | 5, 6, 19 | syl56 36 | . . 3 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| 21 | 3, 20 | syl6 35 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 [wsbc 3435 ⦋csb 3533 class class class wbr 4653 hereditary whe 38066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege52a 38151 ax-frege58b 38195 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-he 38067 |
| This theorem is referenced by: frege71 38228 |
| Copyright terms: Public domain | W3C validator |