![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 5918 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 208 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5114 Fun wfun 5882 Fn wfn 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-fn 5891 |
This theorem is referenced by: upgrres 26198 umgrres 26199 funimaeq 39461 limsupresxr 39998 liminfresxr 39999 |
Copyright terms: Public domain | W3C validator |