Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimaeq Structured version   Visualization version   GIF version

Theorem funimaeq 39461
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimaeq.x 𝑥𝜑
funimaeq.f (𝜑 → Fun 𝐹)
funimaeq.g (𝜑 → Fun 𝐺)
funimaeq.a (𝜑𝐴 ⊆ dom 𝐹)
funimaeq.d (𝜑𝐴 ⊆ dom 𝐺)
funimaeq.e ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
funimaeq (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem funimaeq
StepHypRef Expression
1 funimaeq.x . . . 4 𝑥𝜑
2 funimaeq.e . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
3 funimaeq.g . . . . . . . 8 (𝜑 → Fun 𝐺)
43funfnd 5919 . . . . . . 7 (𝜑𝐺 Fn dom 𝐺)
54adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐺 Fn dom 𝐺)
6 funimaeq.d . . . . . . 7 (𝜑𝐴 ⊆ dom 𝐺)
76adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ dom 𝐺)
8 simpr 477 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
9 fnfvima 6496 . . . . . 6 ((𝐺 Fn dom 𝐺𝐴 ⊆ dom 𝐺𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
105, 7, 8, 9syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
112, 10eqeltrd 2701 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (𝐺𝐴))
121, 11ralrimia 39315 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐺𝐴))
13 funimaeq.f . . . 4 (𝜑 → Fun 𝐹)
14 funimaeq.a . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
15 funimass4 6247 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ (𝐺𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐺𝐴)))
1613, 14, 15syl2anc 693 . . 3 (𝜑 → ((𝐹𝐴) ⊆ (𝐺𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐺𝐴)))
1712, 16mpbird 247 . 2 (𝜑 → (𝐹𝐴) ⊆ (𝐺𝐴))
182eqcomd 2628 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
1913funfnd 5919 . . . . . . 7 (𝜑𝐹 Fn dom 𝐹)
2019adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐹 Fn dom 𝐹)
2114adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ dom 𝐹)
22 fnfvima 6496 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (𝐹𝑥) ∈ (𝐹𝐴))
2320, 21, 8, 22syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (𝐹𝐴))
2418, 23eqeltrd 2701 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐹𝐴))
251, 24ralrimia 39315 . . 3 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝐴))
26 funimass4 6247 . . . 4 ((Fun 𝐺𝐴 ⊆ dom 𝐺) → ((𝐺𝐴) ⊆ (𝐹𝐴) ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝐴)))
273, 6, 26syl2anc 693 . . 3 (𝜑 → ((𝐺𝐴) ⊆ (𝐹𝐴) ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝐴)))
2825, 27mpbird 247 . 2 (𝜑 → (𝐺𝐴) ⊆ (𝐹𝐴))
2917, 28eqssd 3620 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wss 3574  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator