Proof of Theorem funimaeq
| Step | Hyp | Ref
| Expression |
| 1 | | funimaeq.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
| 2 | | funimaeq.e |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 3 | | funimaeq.g |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐺) |
| 4 | 3 | funfnd 5919 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn dom 𝐺) |
| 6 | | funimaeq.d |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) |
| 7 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐺) |
| 8 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 9 | | fnfvima 6496 |
. . . . . 6
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 10 | 5, 7, 8, 9 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 11 | 2, 10 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 12 | 1, 11 | ralrimia 39315 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 13 | | funimaeq.f |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
| 14 | | funimaeq.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 15 | | funimass4 6247 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐺 “ 𝐴))) |
| 16 | 13, 14, 15 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐺 “ 𝐴))) |
| 17 | 12, 16 | mpbird 247 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴)) |
| 18 | 2 | eqcomd 2628 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
| 19 | 13 | funfnd 5919 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 20 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
| 21 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐹) |
| 22 | | fnfvima 6496 |
. . . . . 6
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 23 | 20, 21, 8, 22 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 24 | 18, 23 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 25 | 1, 24 | ralrimia 39315 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 26 | | funimass4 6247 |
. . . 4
⊢ ((Fun
𝐺 ∧ 𝐴 ⊆ dom 𝐺) → ((𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹 “ 𝐴))) |
| 27 | 3, 6, 26 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹 “ 𝐴))) |
| 28 | 25, 27 | mpbird 247 |
. 2
⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 29 | 17, 28 | eqssd 3620 |
1
⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |