| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hb3anOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of hb3an 2129 as of 6-Oct-2021. (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbOLD.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbOLD.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| hbOLD.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
| Ref | Expression |
|---|---|
| hb3anOLD | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbOLD.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nfiOLD 1734 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | hbOLD.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | nfiOLD 1734 | . . 3 ⊢ Ⅎ𝑥𝜓 |
| 5 | hbOLD.3 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 6 | 5 | nfiOLD 1734 | . . 3 ⊢ Ⅎ𝑥𝜒 |
| 7 | 2, 4, 6 | nf3anOLD 2239 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
| 8 | 7 | nfriOLD 2189 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1037 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-nfOLD 1721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |