MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriOLD Structured version   Visualization version   GIF version

Theorem nfriOLD 2189
Description: Obsolete proof of nf5ri 2065 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfriOLD.1 𝑥𝜑
Assertion
Ref Expression
nfriOLD (𝜑 → ∀𝑥𝜑)

Proof of Theorem nfriOLD
StepHypRef Expression
1 nfriOLD.1 . 2 𝑥𝜑
2 nfrOLD 2188 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
31, 2ax-mp 5 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  alimdOLD  2191  alrimiOLD  2192  eximdOLD  2197  nexdOLD  2198  albidOLD  2199  exbidOLD  2200  19.3OLD  2202  nfim1OLD  2228  hbanOLD  2240  hb3anOLD  2241
  Copyright terms: Public domain W3C validator