| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbnd | Structured version Visualization version GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbn 2146. (Contributed by NM, 3-Jan-2002.) |
| Ref | Expression |
|---|---|
| hbnd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbnd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| hbnd | ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbnd.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | hbnd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | alrimih 1751 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 4 | hbnt 2144 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |