| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbxfrbi | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2730 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1747 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 4 | 1, 2, 3 | 3imtr4i 281 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: hbn1fw 1972 hbe1w 1976 hbe1 2021 hbexOLD 2152 hbab1 2611 hbab 2613 hbxfreq 2730 hbral 2943 bnj982 30849 bnj1095 30852 bnj1096 30853 bnj1276 30885 bnj594 30982 bnj1445 31112 bj-hbab1 32771 hbra2VD 39096 |
| Copyright terms: Public domain | W3C validator |