| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of hbex 2156 as of 16-Oct-2021. (Contributed by NM, 12-Mar-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbexOLD.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbexOLD | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1705 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | hbexOLD.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | hbn 2146 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| 4 | 3 | hbal 2036 | . . 3 ⊢ (∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑) |
| 5 | 4 | hbn 2146 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) |
| 6 | 1, 5 | hbxfrbi 1752 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: nfexOLD 2155 |
| Copyright terms: Public domain | W3C validator |