![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
Ref | Expression |
---|---|
hlsuprexch.b | ⊢ 𝐵 = (Base‘𝐾) |
hlsuprexch.l | ⊢ ≤ = (le‘𝐾) |
hlsuprexch.j | ⊢ ∨ = (join‘𝐾) |
hlsuprexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 34646 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlsuprexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlsuprexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlsuprexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlsuprexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 2, 3, 4, 5 | cvlexch1 34615 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
7 | 1, 6 | syl3an1 1359 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 joincjn 16944 Atomscatm 34550 CvLatclc 34552 HLchlt 34637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cvlat 34609 df-hlat 34638 |
This theorem is referenced by: cvratlem 34707 4noncolr3 34739 3dimlem4a 34749 3dimlem4OLDN 34751 ps-2 34764 4atlem0a 34879 |
Copyright terms: Public domain | W3C validator |