HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcomi Structured version   Visualization version   GIF version

Theorem hvmulcomi 27904
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvmulcomi (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))

Proof of Theorem hvmulcomi
StepHypRef Expression
1 hvmulcom.1 . 2 𝐴 ∈ ℂ
2 hvmulcom.2 . 2 𝐵 ∈ ℂ
3 hvmulcom.3 . 2 𝐶 ∈ ℋ
4 hvmulcom 27900 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1424 1 (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934  chil 27776   · csm 27778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-mulcom 10000  ax-hvmulass 27864
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator