![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcomnan | Structured version Visualization version GIF version |
Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018.) |
Ref | Expression |
---|---|
ifcomnan | ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.13 522 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | iffalse 4095 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, 𝐶)) | |
3 | iffalse 4095 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) | |
4 | 3 | ifeq2d 4105 | . . . 4 ⊢ (¬ 𝜑 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜓, 𝐵, 𝐶)) |
5 | 2, 4 | eqtr4d 2659 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
6 | iffalse 4095 | . . . . 5 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
7 | 6 | ifeq2d 4105 | . . . 4 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜑, 𝐴, 𝐶)) |
8 | iffalse 4095 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜑, 𝐴, 𝐶)) | |
9 | 7, 8 | eqtr4d 2659 | . . 3 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
10 | 5, 9 | jaoi 394 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
11 | 1, 10 | syl 17 | 1 ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ifcif 4086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-un 3579 df-if 4087 |
This theorem is referenced by: mdetunilem6 20423 |
Copyright terms: Public domain | W3C validator |