| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifov | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| ifov | ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq 6656 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐹𝐵)) | |
| 2 | oveq 6656 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐺𝐵)) | |
| 3 | 1, 2 | ifsb 4099 | 1 ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ifcif 4086 (class class class)co 6650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-if 4087 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: monmatcollpw 20584 |
| Copyright terms: Public domain | W3C validator |