| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpfal | Structured version Visualization version GIF version | ||
| Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4095. This is essentially dedlemb 1003. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.) |
| Ref | Expression |
|---|---|
| ifpfal | ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpn 1022 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) | |
| 2 | ifptru 1023 | . 2 ⊢ (¬ 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ 𝜒)) | |
| 3 | 1, 2 | syl5bb 272 | 1 ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpid 1025 elimh 1030 wlkdlem4 26582 lfgriswlk 26585 2pthnloop 26627 eupth2lem3lem4 27091 |
| Copyright terms: Public domain | W3C validator |