| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifptru | Structured version Visualization version GIF version | ||
| Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 4092. This is essentially dedlema 1002. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
| Ref | Expression |
|---|---|
| ifptru | ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 350 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | orc 400 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
| 3 | 2 | biantrud 528 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒)))) |
| 4 | dfifp3 1015 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 5 | 3, 4 | syl6bbr 278 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, 𝜒))) |
| 6 | 1, 5 | bitr2d 269 | 1 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpfal 1024 ifpid 1025 elimh 1030 dedt 1031 wlkl1loop 26534 lfgrwlkprop 26584 eupth2lem3lem3 27090 |
| Copyright terms: Public domain | W3C validator |