| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot23 | Structured version Visualization version GIF version | ||
| Description: Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpnot23 | ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 509 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | pm4.55 515 | . . . 4 ⊢ (¬ (¬ 𝜑 ∧ 𝜒) ↔ (𝜑 ∨ ¬ 𝜒)) | |
| 3 | 1, 2 | anbi12i 733 | . . 3 ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ ¬ (¬ 𝜑 ∧ 𝜒)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (𝜑 ∨ ¬ 𝜒))) |
| 4 | ioran 511 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (¬ 𝜑 ∧ 𝜒))) | |
| 5 | dfifp4 1016 | . . 3 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (𝜑 ∨ ¬ 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 292 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| 7 | df-ifp 1013 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 8 | 6, 7 | xchnxbir 323 | 1 ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpnotnotb 37824 ifpnorcor 37825 ifpnancor 37826 ifpnot23b 37827 ifpnot23c 37829 ifpnot23d 37830 ifpdfnan 37831 ifpdfxor 37832 ifpor123g 37853 |
| Copyright terms: Public domain | W3C validator |