Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnot23 Structured version   Visualization version   Unicode version

Theorem ifpnot23 37823
Description: Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.)
Assertion
Ref Expression
ifpnot23  |-  ( -. if- ( ph ,  ps ,  ch )  <-> if- ( ph ,  -.  ps ,  -.  ch ) )

Proof of Theorem ifpnot23
StepHypRef Expression
1 ianor 509 . . . 4  |-  ( -.  ( ph  /\  ps ) 
<->  ( -.  ph  \/  -.  ps ) )
2 pm4.55 515 . . . 4  |-  ( -.  ( -.  ph  /\  ch )  <->  ( ph  \/  -.  ch ) )
31, 2anbi12i 733 . . 3  |-  ( ( -.  ( ph  /\  ps )  /\  -.  ( -.  ph  /\  ch )
)  <->  ( ( -. 
ph  \/  -.  ps )  /\  ( ph  \/  -.  ch ) ) )
4 ioran 511 . . 3  |-  ( -.  ( ( ph  /\  ps )  \/  ( -.  ph  /\  ch )
)  <->  ( -.  ( ph  /\  ps )  /\  -.  ( -.  ph  /\  ch ) ) )
5 dfifp4 1016 . . 3  |-  (if- (
ph ,  -.  ps ,  -.  ch )  <->  ( ( -.  ph  \/  -.  ps )  /\  ( ph  \/  -.  ch ) ) )
63, 4, 53bitr4i 292 . 2  |-  ( -.  ( ( ph  /\  ps )  \/  ( -.  ph  /\  ch )
)  <-> if- ( ph ,  -.  ps ,  -.  ch )
)
7 df-ifp 1013 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
86, 7xchnxbir 323 1  |-  ( -. if- ( ph ,  ps ,  ch )  <-> if- ( ph ,  -.  ps ,  -.  ch ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013
This theorem is referenced by:  ifpnotnotb  37824  ifpnorcor  37825  ifpnancor  37826  ifpnot23b  37827  ifpnot23c  37829  ifpnot23d  37830  ifpdfnan  37831  ifpdfxor  37832  ifpor123g  37853
  Copyright terms: Public domain W3C validator