| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imori | Structured version Visualization version GIF version | ||
| Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.) |
| Ref | Expression |
|---|---|
| imori.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imori | ⊢ (¬ 𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imori.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imor 428 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | mpbi 220 | 1 ⊢ (¬ 𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: pm2.1 433 pm2.26 927 rb-ax1 1677 numclwwlk3lem 27241 meran1 32410 meran2 32411 meran3 32412 tsim3 33939 tsor2 33955 tsor3 33956 spr0nelg 41726 |
| Copyright terms: Public domain | W3C validator |