| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inres2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| Ref | Expression |
|---|---|
| inres2 | ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres 5414 | . . 3 ⊢ (𝑆 ∩ (𝑅 ↾ 𝐴)) = ((𝑆 ∩ 𝑅) ↾ 𝐴) | |
| 2 | 1 | ineqcomi 34006 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
| 3 | incom 3805 | . . 3 ⊢ (𝑅 ∩ 𝑆) = (𝑆 ∩ 𝑅) | |
| 4 | 3 | reseq1i 5392 | . 2 ⊢ ((𝑅 ∩ 𝑆) ↾ 𝐴) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
| 5 | 2, 4 | eqtr4i 2647 | 1 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∩ cin 3573 ↾ cres 5116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-res 5126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |