| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mulcomd | Structured version Visualization version GIF version | ||
| Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-mulcomd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| int-mulcomd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-mulcomd.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-mulcomd | ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulcomd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 1 | recnd 10068 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | int-mulcomd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | recnd 10068 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | 2, 4 | mulcomd 10061 | . 2 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 6 | int-mulcomd.3 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 7 | 6 | eqcomd 2628 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 8 | 7 | oveq2d 6666 | . 2 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴)) |
| 9 | 5, 8 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℝcr 9935 · cmul 9941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-mulcom 10000 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |