![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > int0OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of int0 4490 as of 26-Jul-2021. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
int0OLD | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3919 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | pm2.21i 116 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
3 | 2 | ax-gen 1722 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
4 | equid 1939 | . . . 4 ⊢ 𝑥 = 𝑥 | |
5 | 3, 4 | 2th 254 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
6 | 5 | abbii 2739 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
7 | df-int 4476 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
8 | df-v 3202 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | 6, 7, 8 | 3eqtr4i 2654 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 Vcvv 3200 ∅c0 3915 ∩ cint 4475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-nul 3916 df-int 4476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |