MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inton Structured version   Visualization version   GIF version

Theorem inton 5782
Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
Assertion
Ref Expression
inton On = ∅

Proof of Theorem inton
StepHypRef Expression
1 0elon 5778 . 2 ∅ ∈ On
2 int0el 4508 . 2 (∅ ∈ On → On = ∅)
31, 2ax-mp 5 1 On = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  c0 3915   cint 4475  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476  df-tr 4753  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator