MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Structured version   Visualization version   GIF version

Theorem isbn 23135
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isbn (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))

Proof of Theorem isbn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3 (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp))
21anbi1i 731 . 2 ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
3 fveq2 6191 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
4 isbn.1 . . . . 5 𝐹 = (Scalar‘𝑊)
53, 4syl6eqr 2674 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
65eleq1d 2686 . . 3 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp))
7 df-bn 23133 . . 3 Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp}
86, 7elrab2 3366 . 2 (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp))
9 df-3an 1039 . 2 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
102, 8, 93bitr4i 292 1 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  cfv 5888  Scalarcsca 15944  NrmVeccnvc 22386  CMetSpccms 23129  Bancbn 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-bn 23133
This theorem is referenced by:  bnsca  23136  bnnvc  23137  bncms  23141  lssbn  23148  srabn  23156  ishl2  23166
  Copyright terms: Public domain W3C validator