![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is T1. (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ist1 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4444 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
2 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6eqr 2674 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
4 | 3 | eleq2d 2687 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑎 ∈ ∪ 𝑥 ↔ 𝑎 ∈ 𝑋)) |
5 | fveq2 6191 | . . . . 5 ⊢ (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽)) | |
6 | 5 | eleq2d 2687 | . . . 4 ⊢ (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽))) |
7 | 4, 6 | imbi12d 334 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝑎 ∈ ∪ 𝑥 → {𝑎} ∈ (Clsd‘𝑥)) ↔ (𝑎 ∈ 𝑋 → {𝑎} ∈ (Clsd‘𝐽)))) |
8 | 7 | ralbidv2 2984 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
9 | df-t1 21118 | . 2 ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | |
10 | 8, 9 | elrab2 3366 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {csn 4177 ∪ cuni 4436 ‘cfv 5888 Topctop 20698 Clsdccld 20820 Frect1 21111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-t1 21118 |
This theorem is referenced by: t1sncld 21130 t1ficld 21131 t1top 21134 ist1-2 21151 cnt1 21154 ordtt1 21183 qtopt1 29902 onint1 32448 |
Copyright terms: Public domain | W3C validator |