MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1 Structured version   Visualization version   GIF version

Theorem ist1 21125
Description: The predicate 𝐽 is T1. (Contributed by FL, 18-Jun-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ist1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Distinct variable group:   𝐽,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem ist1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
2 ist0.1 . . . . . 6 𝑋 = 𝐽
31, 2syl6eqr 2674 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
43eleq2d 2687 . . . 4 (𝑥 = 𝐽 → (𝑎 𝑥𝑎𝑋))
5 fveq2 6191 . . . . 5 (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽))
65eleq2d 2687 . . . 4 (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽)))
74, 6imbi12d 334 . . 3 (𝑥 = 𝐽 → ((𝑎 𝑥 → {𝑎} ∈ (Clsd‘𝑥)) ↔ (𝑎𝑋 → {𝑎} ∈ (Clsd‘𝐽))))
87ralbidv2 2984 . 2 (𝑥 = 𝐽 → (∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
9 df-t1 21118 . 2 Fre = {𝑥 ∈ Top ∣ ∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥)}
108, 9elrab2 3366 1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  Clsdccld 20820  Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-t1 21118
This theorem is referenced by:  t1sncld  21130  t1ficld  21131  t1top  21134  ist1-2  21151  cnt1  21154  ordtt1  21183  qtopt1  29902  onint1  32448
  Copyright terms: Public domain W3C validator