MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrg Structured version   Visualization version   GIF version

Theorem istrg 21967
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
istrg (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))

Proof of Theorem istrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3 (𝑅 ∈ (TopGrp ∩ Ring) ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring))
21anbi1i 731 . 2 ((𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd))
3 fveq2 6191 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4 istrg.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
53, 4syl6eqr 2674 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀)
65eleq1d 2686 . . 3 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ TopMnd ↔ 𝑀 ∈ TopMnd))
7 df-trg 21963 . . 3 TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
86, 7elrab2 3366 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd))
9 df-3an 1039 . 2 ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd))
102, 8, 93bitr4i 292 1 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  cfv 5888  mulGrpcmgp 18489  Ringcrg 18547  TopMndctmd 21874  TopGrpctgp 21875  TopRingctrg 21959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-trg 21963
This theorem is referenced by:  trgtmd  21968  trgtgp  21971  trgring  21974  nrgtrg  22494
  Copyright terms: Public domain W3C validator