| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version | ||
| Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| istvc | ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 | . . . 4 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊)) | |
| 2 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | syl6eqr 2674 | . . 3 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹) |
| 4 | 3 | eleq1d 2686 | . 2 ⊢ (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing)) |
| 5 | df-tvc 21966 | . 2 ⊢ TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing} | |
| 6 | 4, 5 | elrab2 3366 | 1 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 Scalarcsca 15944 TopDRingctdrg 21960 TopModctlm 21961 TopVecctvc 21962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-tvc 21966 |
| This theorem is referenced by: tvctdrg 21996 tvctlm 22000 nvctvc 22504 |
| Copyright terms: Public domain | W3C validator |