| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunsuc | Structured version Visualization version GIF version | ||
| Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunsuc.1 | ⊢ 𝐴 ∈ V |
| iunsuc.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 5729 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | iuneq1 4534 | . . 3 ⊢ (suc 𝐴 = (𝐴 ∪ {𝐴}) → ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 |
| 4 | iunxun 4605 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) | |
| 5 | iunsuc.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | iunsuc.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 7 | 5, 6 | iunxsn 4603 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| 8 | 7 | uneq2i 3764 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| 9 | 3, 4, 8 | 3eqtri 2648 | 1 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 {csn 4177 ∪ ciun 4520 suc csuc 5725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-iun 4522 df-suc 5729 |
| This theorem is referenced by: pwsdompw 9026 |
| Copyright terms: Public domain | W3C validator |