| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version | ||
| Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
| 2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoi 394 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: pm2.64 830 pm2.82 897 nn0enne 15094 dvdsprmpweqnn 15589 dvdsprmpweqle 15590 2lgsoddprmlem3 25139 prtlem14 34159 |
| Copyright terms: Public domain | W3C validator |