| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoi3 | Structured version Visualization version GIF version | ||
| Description: Inference separating a disjunct of an antecedent. (Contributed by Alexander van der Vekens, 25-May-2018.) |
| Ref | Expression |
|---|---|
| jaoi3.1 | ⊢ (𝜑 → 𝜓) |
| jaoi3.2 | ⊢ ((¬ 𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| jaoi3 | ⊢ ((𝜑 ∨ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoi3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jaoi3.2 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | jaoi 394 | . 2 ⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜒)) → 𝜓) |
| 4 | 3 | jaoi2 1010 | 1 ⊢ ((𝜑 ∨ 𝜒) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: 2mpt20 6882 bropopvvv 7255 bropfvvvv 7257 ssnn0fi 12784 swrdnd 13432 |
| Copyright terms: Public domain | W3C validator |