MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mpt20 Structured version   Visualization version   GIF version

Theorem 2mpt20 6882
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
2mpt20.o 𝑂 = (𝑥𝐴, 𝑦𝐵𝐸)
2mpt20.u ((𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
Assertion
Ref Expression
2mpt20 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝐶,𝑠,𝑡   𝐷,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑡,𝑠)   𝑇(𝑥,𝑦,𝑡,𝑠)   𝐸(𝑥,𝑦,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑡,𝑠)   𝑋(𝑥,𝑦,𝑡,𝑠)   𝑌(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem 2mpt20
StepHypRef Expression
1 ianor 509 . 2 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) ↔ (¬ (𝑋𝐴𝑌𝐵) ∨ ¬ (𝑆𝐶𝑇𝐷)))
2 2mpt20.o . . . . . 6 𝑂 = (𝑥𝐴, 𝑦𝐵𝐸)
32mpt2ndm0 6875 . . . . 5 (¬ (𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = ∅)
43oveqd 6667 . . . 4 (¬ (𝑋𝐴𝑌𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆𝑇))
5 0ov 6682 . . . 4 (𝑆𝑇) = ∅
64, 5syl6eq 2672 . . 3 (¬ (𝑋𝐴𝑌𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
7 notnotb 304 . . . 4 ((𝑋𝐴𝑌𝐵) ↔ ¬ ¬ (𝑋𝐴𝑌𝐵))
8 2mpt20.u . . . . . . 7 ((𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
98adantr 481 . . . . . 6 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑋𝑂𝑌) = (𝑠𝐶, 𝑡𝐷𝐹))
109oveqd 6667 . . . . 5 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇))
11 eqid 2622 . . . . . . 7 (𝑠𝐶, 𝑡𝐷𝐹) = (𝑠𝐶, 𝑡𝐷𝐹)
1211mpt2ndm0 6875 . . . . . 6 (¬ (𝑆𝐶𝑇𝐷) → (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇) = ∅)
1312adantl 482 . . . . 5 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑠𝐶, 𝑡𝐷𝐹)𝑇) = ∅)
1410, 13eqtrd 2656 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
157, 14sylanbr 490 . . 3 ((¬ ¬ (𝑋𝐴𝑌𝐵) ∧ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
166, 15jaoi3 1011 . 2 ((¬ (𝑋𝐴𝑌𝐵) ∨ ¬ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
171, 16sylbi 207 1 (¬ ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐶𝑇𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  c0 3915  (class class class)co 6650  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  wwlksnon0  26812
  Copyright terms: Public domain W3C validator